State-dependent block of rabbit vascular smooth muscle delayed rectifier and Kv1.5 channels by inhibitors of cytochrome P450-dependent enzymes.
نویسندگان
چکیده
The effects of the cytochrome P450 inhibitors clotrimazole, ketoconazole, and 1-aminobenzotriazole (1-ABT) on native delayed rectifier (K(DR)) and cloned Kv1.5 (RPV Kv1.5) K+ channels of rabbit portal vein (RPV) myocytes were determined using whole-cell and single channel patch-clamp analysis. Clotrimazole reduced K(DR) and RPV Kv1.5 whole-cell current with respective Kd values of 1.15 +/- 0.39 and 1.99 +/- 0.6 microM. Clotrimazole acted via an open state blocking mechanism based on the following: 1) the early time course of K(DR) current activation was not affected, but inhibition developed with time during depolarizing steps and increased the rate of decay in current amplitude; 2) the inhibition was voltage-dependent, increasing steeply over the voltage range of K(DR) activation; and 3) mean open time of RPV Kv1.5 channels in inside-out patches was decreased significantly. Ketoconazole reduced K(DR) current amplitude with a Kd value of 38 +/- 3.2 microM. However, ketoconazole acted via a closed (resting) state blocking mechanism: 1) K(DR) amplitude was reduced throughout the duration of depolarizing steps and the rate of decay of current was unaffected, 2) there was no voltage dependence to the block by ketoconazole over the K(DR) activation range, and 3) ketoconazole did not affect mean open time of RPV Kv1.5 channels in inside-out membrane patches. 1-ABT between 0.5 and 3 mM did not affect native K(DR) or RPV Kv1.5 current of rabbit portal vein myocytes. Clotrimazole and ketoconazole, but not 1-ABT, suppress vascular K(DR) channels by direct, state-dependent block mechanisms not involving the modulation of cytochrome P450 enzyme activity.
منابع مشابه
Heteromultimeric Kv1.2-Kv1.5 channels underlie 4-aminopyridine-sensitive delayed rectifier K(+) current of rabbit vascular myocytes.
The molecular identity of vascular delayed rectifier K(+) channels (K(DR)) is poorly characterized. Inhibition by 4-aminopyridine (4-AP) of K(DR) of rabbit portal vein (RPV) myocytes was studied by patch clamp and compared with that of channels composed of Kv1.5 and/or Kv1.2 subunits cloned from the RPV and expressed in mammalian cells. 4-AP block of K(DR) was pulse-frequency dependent, require...
متن کاملCharacterization of endothelium-dependent relaxation independent of NO and prostaglandins in guinea pig coronary artery.
In the presence of N omega-nitro-L-arginine and indomethacin, acetylcholine (ACh) induced endothelium-dependent relaxation in guinea pig coronary artery preconstricted with 9,11-dideoxy-9 alpha, 11 alpha-epoxymethano prostaglandin F2 alpha. Dexamethasone and arachidonyltrifluoromethyl ketone, inhibitors of phospholipase A2, and 17-octadecynoic acid, an inhibitor of cytochrome P450 epoxygenase, ...
متن کاملInhibitory effects of cholinesterase inhibitor donepezil on the Kv1.5 potassium channel
Kv1.5 channels carry ultra-rapid delayed rectifier K+ currents in excitable cells, including neurons and cardiac myocytes. In the current study, the effects of cholinesterase inhibitor donepezil on cloned Kv1.5 channels expressed in HEK29 cells were explored using whole-cell recording technique. Exposure to donepezil resulted in a rapid and reversible block of Kv1.5 currents, with an IC50 value...
متن کاملEscitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells
We investigated the inhibitory effect of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on voltage-dependent K+ (Kv) channels in freshly separated from rabbit coronary arterial smooth muscle cells. The application of escitalopram rapidly inhibited vascular Kv channels. Kv currents were progressively inhibited by an increase in the concentrations of escitalopram, suggesting that ...
متن کاملMolecular composition of 4-aminopyridine-sensitive voltage-gated K(+) channels of vascular smooth muscle.
Voltage-gated K(+) channels (Kv) play a critical role in regulating arterial tone by modulating the membrane potential of vascular smooth muscle cells. Our previous work demonstrated that the dominant 4-aminopyridine (4-AP)-sensitive, delayed rectifier Kv current of rabbit portal vein (RPV) myocytes demonstrates similar 4-AP sensitivity and biophysical properties to Kv1alpha-containing channels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 298 2 شماره
صفحات -
تاریخ انتشار 2001